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The elliptic Lindstedt}PoincareH method is used/employed to study the periodic
solutions of quadratic strongly non-linear oscillators of the form xK#c

1
x#

c
2
x2"e f (x,. xR ), in which the Jacobian elliptic functions are employed instead of

the usual circular functions in the classical Lindstedt}PoincareH method. The
generalized Van de Pol equation with f (x, xR )"k

0
#k

1
x!k

2
x2 is studied in

detail. Comparisons are made with the solutions obtained by using the
Lindstedt}PoincareH method and Runge}Kutta method to show the e$ciency of
the present method.
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1. INTRODUCTION

Since 1969 when Barkham and Soudack [1] "rst used Jacobian elliptic functions to
construct an approximate solution for the equation

xK#c
1
x#c

3
x3"e f (x, xR , t), (1.1)

many researchers have been developing various elliptic function methods such as
the elliptic harmonic balance method, elliptic Krylov}Bogoliubov method, elliptic
averaging method, elliptic Galerkin method, elliptic Rayleigh method, elliptic
cubication technique and so on. This is well documented in the work of Yuste [2].
The authors have also presented two other elliptic function methods: elliptic
perturbation method [3, 4] and elliptic Lindstedt}PoincareH method [5]. However,
most of these methods are related to cubic non-linear oscillators, and very few of
them have analyzed the equation with quadratic non-linearity. In this paper, the
elliptic Lindstedt}PoincareH method [5] will be used to analyze the periodic
solutions of quadratic non-linear oscillators of the form

xK#c
1
x#c

2
x2"e f (x, xR ) (1.2)
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which are associated with many physical systems such as betatron oscillations and
vibrations of shells. It is therefore also an important area of non-linear vibration
investigation.

2. THE ELIPTIC LINDSTEDT}POINCARED METHOD

The elliptic Lindstedt}PoincareH (ELP) method was presented by the authors [5]
for certain oscillators having cubic non-linearity. Now, we apply the ELP method
for the equation having quadratic non-linearity

xK#c
1
x#c

2
x2"e f (x, xR ), (2.1)

where e is a small parameter, and dots denote derivatives with respect to time t. We
introduce a new variable q, and let

q"ut, (2.2)

where u is the non-linear frequency and will be determined later. Equation (2.1)
then becomes

u2 xn#c
1
x#c

2
x2"e f (x, ux@), (2.3)

in which primes denote derivatives with respect to the new variable q. Then let

x"
=
+
n/0

en x
n
(q), u"

=
+
n/0

en u
n
, (2.4, 2.5)

where u
n
are constants and x

n
are assumed to be periodic functions. Substituting

equations (2.4) and (2.5) into equation (2.3), expanding f (x, ux@) in power series of
e and equating coe$cients of like power of e yield the following equations:

e0 : u2
0
xA
0
#c

1
x
0
#c

2
x2
0
"0, (2.6)

e1 :u2
0
xA
1
#(c

1
#2c

2
x
0
)x

1
" f (x

0
, u

0
x@
0
)!2u

0
u

1
xA
0

(2.7)

e2 : u2
0
xA
2
#(c

1
#2c

2
x
0
) x

2
" f @

x
(x

0
, u

0
x@
0
)x

1
#f @

xR
(x

0
, u

0
x@
0
) (u

0
x@
1
#u

1
x@
0
)

!(u2
1
#2u

0
u

2
) xA

0
!2u

0
u

1
xA
1
!c

2
x2
1

(2.8)

in which f @
x
"Lf/Lx, f @

xR
&Lf/LxR . Equation (2.6) has an exact analytical solution

which can be expressed by Jacobian elliptic functions in the case of c
1
'0 and

c
2
'0:

x
0
"a

0
cn2 (q, k)#b

0
, a

0
"6u2

0
k2/c

2
, (2.9, 2.10)

b
0
"![4u2

0
(2k2!1)#c

1
]/2c

2
, u4

0
"c2

1
/[16(k4!k2#1)], (2.11, 2.12)

cn(q, k) is the cosine Jacobian elliptic function, a
0
, u

0
and k are called the amplitude,

the angular frequency and the modulus of the elliptic function, respectively, and b
0

is called the bias. Obviously, the period of x
0

is 2K, where K is the complete elliptic
integral of the "rst kind.
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By multiplying both sides of equation (2.7) by x@
0

and then integrating the
equation, one obtains

u2
0
[x@

0
x@
1
!xA

0
x
1
] K

q

0

#P
q

0

[u2
0
x@@@
0
#c

1
x@
0
#2c

2
x
0
x@
0
] x

1
dq

"P
q

0

( f (x
0
, u

0
x@
0
)!2u

0
u

1
xA
0
] x@

0
dq. (2.13)

Di!erentiating equation (2.6) with respect to q leads to

u2
0
x@@@
0
#c

1
c@
0
#2c

2
x
0
x@
0
"0. (2.14)

Note that x
0

is a periodic function with period ¹"2K. Therefore, by letting
q"2K in equation (2.13), one obtains

P
2K

0

[ f (x
0
, u

0
x@
0
)!2u

0
u

1
xA
0
] x@

0
dq"0. (2.15)

Since

P
2K

0

xA
0
x@
0
dq"

1
2

x@2
0 K

2K

0

"0, (2.16)

P
2K

0

f (x
0
, u

0
x@
0
)x@

0
dq"0. (2.17)

Therefore, the necessary condition for equation (2.1) to have a limit cycle is that the
equation (2.17) has a non-zero solution. So a

0
, b

0
, u

0
and k2 can be determined

from equations (2.10)}(2.12) and (2.17).
It can been seen from equation (2.14) that x@

0
is a solution of the homogeneous

part of equation (2.7). Therefore, the particular solution of equation (2.7) can be
expressed by the following equation according to the theory of di!erential
equations:

x
1
"x@

0 P
q

0

1
x@2
0
GP

q

0

x@
0

u2
0

[ f (x
0
, u

0
x@
0
)!2u

0
u

1
xA
0
] dqN dq. (2.18)

Note that

x@
0 P

q

0

1
x@2
0
CP

q

0

2u
1

u
0

x@
0
xA
0

dqD dq"(u
1
/u

0
) x@

0
q. (2.19)

Hence equation (2.18) becomes

x
1
"x@

0 P
q

0

1
x@2
0
GP

q

0

x@
0

u2
0

f (x
0
, u

0
x@
0
) dqHdq!(u

1
/u

0
) x@

0
q. (2.20)

The term (u
1
/u

0
)x@

0
q is called a secular term. It tends to in"nity as qP$R.

However, x
1
/x

0
should be bounded for all q. If f (x

0
, u

0
x@
0
) does not contain the

term xA
0

explicitly or implicitly, then u
1

must vanish, i.e.,

u
1
"0. (2.21)
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One can continue the perturbation procedure to determinate the next order
solution x

2
and u

2
.

It is worth pointing out that when c
1
'0, c

2
(0, the solution of equation (2.6)

can be expressed by

x
0
(q)"aN

0
sn2 q#bM

0
, (2.22)

where

aN
0
"!a

0
, bM

0
"a

0
#b

0
. (2.23, 2.24)

It can be shown that equation (2.22) is indeed identical to equation (2.9), because

a
0

cn2 q#b
0
"a

0
(1!sn2 q)#b

0
"aN

0
sn2q#bM

0
.

Similarly, when c
1
(0, c

2
'0, the solution of equation (2.6) can be expressed by

x
0
(q)"aNM

0
dn2 q#bMM

0
. (2.25)

Here

aNM
0
"a

0
/k2, bMM

0
"b

0
!a

0
(1!k2)/k2. (2.26, 2.27)

It can also be proved that equation (2.25) is equivalent to equation (2.9). Therefore,
one can use equations (2.9)}(2.12) as a uni"ed solution of equation (2.6) later.

3. THE GENERALIZED VAN DER POL OSCILLATOR

As an application of the ELP method, we consider the generalized Van der Pol
oscillator

xK#c
1
x#c

2
x2"e(k

0
#k

1
x!k

2
x2) xR . (3.1)

Here f (x, xR )"(k
0
#k

1
x!k

2
x2) xR . Let

I
1
(q)"P

q

0

f (x
0
, u

0
x@
0
) x@

0
dq. (3.2)

Substituting equation (2.9) into (3.2), one obtains

I
1
(q)"4u

0
a2
0

[C
a
I
11

(q)#C
b
I
12

(q)#C
c
I
13

(q)], (3.3)

where

C
a
"k

0
#k

1
b
0
!k

2
b2
0
, C

b
"k

1
a
0
!2k

2
a
0
b
0
, C

c
"!k

2
a2
0
,

I
11

(q)"P
q

0

sn2 q cn2 qdn2 qdq

"M[(1!k2) (k2!2)#2(k4!k2#1) E/K]q

#2(k4!k2#1)Z(q)!3k4 sn q cn3 qdn q

#k2 (2k2!1) sn q cn qdn qN/(15k4),
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I
12

(q)"P
q

0

sn2 q cn4 q dn2 q dq

"M[(1!k2) (3k4!15k2#8)#(2k2!1) (3k4!3k2#8)E/K]q

#(2k2!1) (3k4!3k2#8)Z(q)#k2 [4(2k2!1)2

#10k2 (1!k2)] sn q cn qdn q

#3k4 (2k2!1) sn q cn3 qdn q!15k6 sn q cn5 qdn qN/(105k6)

I
13

(q)"P
q

0

sn2 q cn6 qdn2 qdq

"M[(1!k2) (5k6!45k4#48k2!16)#(10k8!20k6#66k4!56k2#16)E/K] q

#(10k8!20k6#66k4!56k2#16)Z(q)

#k2 (2k2!1) [8(2k2!1)2#27k2 (1!k2)] sn q cn q dn q

#k4 [6(2k2!1)2#14k2 (1!k2)] sn q cn qdn q

#5k6 (2k2!1) sn q cn5 qdn q!35k8 sn q cn7 qdn qN/(315k8).

Hence equation (3.3) can be further expressed as

I
1
(q)"4u

0
a2
0
[(C

!
Ik
11
#C

b
Ik
12
#C

c
Ik
13

) q#C
11

Z(q)#C
12

sn q cn qdn q

#C
13

sn qCn3 qdn q#C
14

sn q cn5 qdn q#C
15

dn q cn7 qdn q. (3.4)

Using condition of equation (2.17) and the periodic property of elliptic functions,
one has

C
!
Ik
11
#C

"
Ik
12
#C

#
Ik
13
"0, (3.5)

where

Ik
11
"[(1!k2) (k2!2)#2 (k4!k2#1)E/K]/(15k4),

Ik
12
"[(1!k2) (3k2!15k2#8)#(2k2!1) (3k4!3k2#8)E/K]/(105k6),

Ik
13
"[(1!k2) (5k6!45k4#48k2!16)

#(10k8!20k6#66k4!56k2#16)E/K]/(315k8).

Therefore,

I
1
(q)"4u

0
a2
0
[C

11
Z(q)#C

12
sn q cn qdn qdn q#C

13
sn q cn3 q dn q

#C
14

sn q cn5 q dn q#C
15

sn q cn7 qdn q]. (3.6)

Z(q) is called Jacobi Zeta function with period 2K, and is de"ned [6] by

Z(q)"E(q)!
E
K

q, (3.7)

where E(q) is the elliptic integral of the second kind and E is the complete integral of
E(q). Note that f (x

0
, u

0
x@
0
)"(k

0
#k

1
x
0
!k

2
x2
0
) u

0
x@
0
; obviously, it does not
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contain the term xA
0
, so u

1
"0 and equation (2.18) becomes

x
1
"x@

0 P
q

0

1
u2

0
x@2
0

I
1
(q) dq, (3.8)

Substituting equation (3.6) into equation (3.8) and integrating it, one "nally obtains
x
1

as

x
1
"(x@

0
/u

0
)

5
+
j/1

C
1j

D
1j
#C

10
x@
0
, (3.9)

x@
1
"(xA

0
/u

0
)

5
+
j/1

C
1j

D
1j
#(x@

0
/u

0
)

5
+
j/1

C
1j

S
1j
#C

10
xA
0

(3.10)

in which

D
1j
"P S

1j
dq ( j"1, 2,2, 5), C

10
"(!1/u

0
) lim
q?0

C
1j

D
1j

.

The coe$cients of C
1j

, D
1j

and S
1j

are listed in Appendix A.

4. EXAMPLES

Example 1. Consider the equation

xK#8x!x2"e (1!x2) xR . (4.1)

In this example, c
1
"8, c

2
"!1, k

0
"1, k

1
"0 and k

2
"1. One gets

k"0)5429 from equation (3.5) and a
0
"!3)974, b

0
"2)155, u

0
"1)499 from

equations (2.10) to (2.12). Then one gets the coe$cients C
1j

from formulas listed in
Appendix A. C

10
"6)5310, C

11
"!55)5437, C

12
"11)1035, C

13
"!2)2156,

C
14

"!2)0980, C
15
"1)7549. The solution to O (e2) is x"x

0
#ex

1
#O(e2),

where x
0
and x

1
are taken from equation (2.9) and equation (3.11) respectively. One

also obtains the solution of the classical L}P method from Appendix B:

x"0)25#2 cos q!0)0833 cos 2q#e (0)2652 sin q!0)0839 sin 3q).

The limit cycle phase portraits for the cases e"0)1 and e"0)3 are shown in
Figure 1. Comparisons are also made with the results of the numerical integration
method (in examples of this paper, the fourth order Runge}Kutta (R}K) method is
employed) and the classical Lindstedt}PoincareH (L}P) method. It can be seen from
Figure 1 that the solutions obtained by the present method are very close to those
obtained by the fourth order R}K method for the both cases of e"0)1 and e"0)3,
while the solution of the L}P method has obvious errors when e"0)3.

Example 2. Consider the equation

xK#x#x2"e (0)1#x!x2) xR . (4.2)

In this example, c
1
"1, c

2
"1, k

0
"0)1, k

1
"1 and k

2
"1. One gets k"0)7114

from equation (3.5) and a
0
"0)8766, b

0
"!0)5071, u

0
"0)5373 from equations



Figure 1. Limit cycles of equation (4.1). (a) e"0)1; (b) e"0)3; (**) R}K method; (#) present
method; (r) L}P method.

Figure 2. Limit cycles of equation (4.2). (a) e"0)1; (b) e"0)5; (**) R}K method; (#) present
method; (r) L}P method.
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(2.10) to (2.12). Then one gets the coe$cients C
1j

as follows: C
10
"0)6707,

C
11

"!0)3454, C
12
"0)1615, C

13
"0)1007, C

14
"!0)2525, C

15
"!0)0854.

One also obtains the solution of the classical L}P method from Appendix B:

x"!0)2#0)3163 cos q#0)0667 cos 2q

#e (!0)1096 sin q#0)0667 sin 2q!0)0079 sin 3q).

The limit cycle phase portriats for the cases e"0)1 and e"0)5 are shown in
Figure 2. Comparisons are also made with the results of the numerical intergration
method and the classical L}P method. It can be seen from Figure 2 that the
solutions obtained by the present method are nearly identical with those obtained
by the sourth order R}K method for both cases of e"0)1 and e"0)5, while the



Figure 3. Limit cycles of equation (4.3). (a) e"0)1; (b) e"0)8; (**) R}K method; (#) present
method.
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departure of the solutions of the L}P method is very large for both cases. It can be
said that the results are not acceptable at all.

Example 3. Consider the equation

xK#x#1)5x2"e(0)07#x) xR . (4.3)

In this example, c
1
"1, c

2
"1)5, k

0
"0)07, k

1
"1 and k

2
"0. One gets k"0)8667

from equation (3)5) and a
0
"0)8330, b

0
"!0)5190, u

0
"0)5265 from equations

(2.10) to (2.12). Then one gets the coe$cient C
1j

as follows: C
10
"0)3156,

C
11
"!0)0163, C

12
"!0)0205, C

13
"0)1057, C

14
"!0)1190, C

15
"0)0. The

limit cycle phase portriats for the cases e"0)1 and 0)8 are shown in Figure 3.
Comparisons are also made with the results of the numerical integration method. It
can be seen from Figure 3 that the solutions obtained by the present method are
nearly identical with those given by the fourth order R}K method for both cases of
e"0)1 and e"0)8. However, by using the classicial L}P method one obtains x"0.
Because k

2
"0 in this example, it turns out that M

0
"0 and therefore the solution is

trivial.

5. CONCLUSION

The elliptic Lindstedt}PoincareH (ELP), method is an e$cient method
for calculating periodic solutions of strongly quadratic non-linear oscillators
especially for those equations such as k

2
"0 or c

2
'0, k

1
/k

0
'0 in which

the classical L}P method cannot be used. All the examples show that the results
of the present method are in excellent agreement with those obtained by
the numerical integration method even for moderately large values of the
parameter e.
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APPENDIX A

The coe$cients C
1j

, D
1j

and S
1j

occurring in equation (3.9) are

C
11

"2C
a
(k4!k2#1)/(15k4)#C

b
(2k2!1) (3k4!3k2#8)/(105k6)

#C
c
(10k8!20k6#66k4!56k2#16)/(315k8),

C
12

"C
a
(2k2!1)/(15k2)#C

b
[4 (2k2!1)2#10k2 (1!k2)]/(105k4)

#C
c
(2k2!1) [8 (2k2!1)2#27k2 (1!k2)]/(315 k6),

C
13

"!C
a
/5#C

b
(2k2!1)/(35k2)#C

c
[6 (2k2!1)2#14k2 (1!k2)]/(315 k4),

C
14

"!C
b
/7#C

c
(2k2!1)/(63k2),

C
15

"!C
c
/9,

S
11
"Z (q)/ (sn2 q cn2 qdn2 q), S

12
"1/(sn q cn qdn q); S

13
"cn q/(sn qdn q),

S
14
"cn3 q/(sn qdn q), S

15
"cn5 q/(sn qdn q),

D
11

"(H
1
#H

2
#H

3
#H

4
#H

5
)/k@4,

H
1
"(sn qdn q/cn q!k@4 cn qdn q/sn q#k6 sn q cn q/dn q) Z (q),

H
2
"[k@2 (1#k@2)!(1#k4#k@4) E/K] ln H (q),

H
3
"!(1#k4#k@4)Z2 (q) /2,

H
4
"k@2 ln (cn q)#k@4 ln (sn q)#(k2/2) cn2 q!(k2 k@4/2) sn2 q#(k4/2) dn2 q,

H
5
"(E/K) [!ln (cn q)!k@4 ln (sn q)!k4 ln (dn q)],
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where

k@2"1!k2,

lnH (q)"ln m!2 +
qm

m (1!q2m)
cos (2mv),

m"0)57721566, q"e~(nK@/K), l"nq/2K,

D
12

"ln (sn q)!ln (cn q)/k@2#(k2/k@2) ln (dn q),

D
13

"ln (sn q/dn q),

D
14

"ln (sn q)#(k@2/k2) ln (dn q),

D
15

"ln (sn q)#cn2 q/2k2!(k@4/k4) ln (dn q).

APPENDIX B

The solution of equation (3.1) by using the Lindstedt}PoincareH method:

Let

q"ut and cN
2
"c

2
/e.

Then equation (3.1) becomes

u2 xA#c
1
x#e cN

2
x2"e (k

0
#k

1
x!k

2
x2)ux@.

Using the classicial L}P procedure, one "nally obtains

u"u
0
#e2u

2
#O(e3), x"x

0
#ex

1
#O (e2),

where

u
0
"Jc

1
,

u
2
"(64 k

0
k
1
M

0
!16k2

1
M2

0
!18k

0
k
2
M2

0
!16k

1
k
2
M3

0
#3k2

2
M4

0
)/ (384u

0
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